International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M. \& Hall, S. R. (1983). The XTaL system. Tech. Rep. TR-1364. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

# Structure of 2-(p-Toluenesulfonyl)-1,2,3,4-tetrahydro-1-isoquinolinecarbonitrile 

By J. Wdowiak, M. Gdaniec and Z. Kosturkiewicz*<br>Department of Crystallography, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

(Received 28 December 1988; accepted 10 April 1989)


#### Abstract

C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, M_{r}=312 \cdot 4\), monoclinic, $P 2_{1}$, $a=10.278$ (1), $b=6.467$ (1), $c=11.972$ (1) $\AA, \quad \beta=$ $95.46(1)^{\circ}, \quad V=792 \cdot 1(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=$ $17.74 \mathrm{~cm}^{-1}, F(000)=328$, room temperature, $R=$ 0.054 for 1088 observed reflexions. The heterocyclic fragment of the molecule exhibits a conformation intermediate between half-chair and sofa. The N atom shows considerable pyramidalization [sum of valency angles $\left.=353(1)^{\circ}\right]$.


Introduction. This work is a continuation of our studies of the structures of Reissert compounds (Reissert, 1905). It is of interest to determine the effects of substituents on the molecular conformation in such a group of compounds. Our aim is to compare the arrangement of the side fragments relative to the central $\mathrm{N}(2)$ atom depending on the character and dimensions of those fragments. So far we have investigated the structure of 2-benzoyl-1,2,3,4-tetra-hydro-1-isoquinolinecarbonitrile (I) (Pływaczyk, Tykarska, Jaskólski \& Kosturkiewicz, 1984), ethyl 1-cyano-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate (II) (Gzella, Jaskólski, Rychlewska \& Kosturkiewicz, 1984) and 2-( $p$-toluenesulfonyl)-1,2,3,4-tetrahydroisoquinoline (III) (Urbaniak, Jaskólski, Rozwadowska \& Kosturkiewicz, 1986), which is the product of reductive decyanation of the present Reissert compound.

Experimental. Crystals obtained from methanol, colorless plates. Space group from Weissenberg photographs and the lack of a symmetry center from statistics. Crystal $0.03 \times 0.15 \times 0.5 \mathrm{~mm}$. Syntex $P 2_{1}$ diffractometer, $\theta-2 \theta$ scan. Cell parameters from least-squares treatment of setting angles of 15 reflexions with $16 \leq 2 \theta \leq 26^{\circ}$. An empirical absorption

[^0]correction was applied, using $\psi$ scans (North, Phillips \& Mathews, 1968) (correction factors were in the range $0.77-0.99$ ). 1175 reflexions with $2 \theta \leq 115^{\circ}$, measured in the range $h:-11 \rightarrow 11, k: 0 \rightarrow 7, l: 0 \rightarrow$ 13. No significant intensity variation ( $\pm 2.7 \%$ ) for two standard reflexions ( $0 \overline{1} 1,200$ ) recorded every hour. Peak profile analysis according to Lehmann \& Larsen (1974), 1091 observed reflexions with $I \geq$ $2 \sigma(I)$. Structure solved by heavy-atom method using SHELX76 program (Sheldrick, 1976). Full-matrix least-squares refinement (function minimized: $\sum w\left(F_{o}\right.$ $\left.\left.-F_{c}\right)^{2}\right]$ of anisotropic non-H atoms. H atoms from molecular geometry, included with fixed isotropic thermal parameters in $F_{c}$ calculation. $R=0.054, w R$ $=0.070, S=4 \cdot 2, w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0001 F_{o}^{2}\right] . \Delta / \sigma \leq$ $0.2, \Delta \rho_{\text {max }}=0.22, \Delta \rho_{\text {min }}=-0.17 \mathrm{e} \AA^{-3}$.
Computer programs: SHELX76 (Sheldrick, 1976) and local programs (Jaskólski, 1982). Scattering factors those stored in SHELX76. Molecular illustrations drawn using PLUTO (Motherwell \& Clegg, 1978) and ORTEP (Johnson, 1976).

Discussion. Atomic parameters are given in Table 1, bond lengths and angles in Table $2 . \dagger$ The labeling sequence and a view of the molecule are presented in Fig. 1. The molecule consists of an aromatic ring condensed with a heterocyclic hydrogenated ring containing a cyano group and linked through the ring N atom to a toluenesulfonyl group. Bond lengths and angles in the aromatic rings do not deviate significantly from standard values, and the planes of these rings form an angle of $43 \cdot 4$ (1) ${ }^{\circ}$. The $\mathrm{C} 9-\mathrm{Cl}-\mathrm{N} 2$ angle is tetrahedral $\left[110.4(4)^{\circ}\right]$ in

[^1]Table 1. Final fractional coordinates and equivalent isotropic thermal parameters

| $U_{\text {eq }}=\left(U_{1} U_{2} U_{3}\right)^{1 / 3}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}\left(\AA^{\AA^{2}}\right)$ |
| S(11) | -0.2130 (2) | $0 \cdot 0$ | -0.2181 (1) | 0.0676 (6) |
| O(12) | -0.2903 (5) | $0 \cdot 111$ (1) | -0.1455 (4) | 0.088 (2) |
| O(13) | -0.2340 (5) | -0.2200 (9) | -0.2374 (4) | 0.079 (2) |
| $\mathrm{N}(2)$ | -0.2409 (5) | $0 \cdot 1091$ (9) | -0.3406 (4) | 0.059 (2) |
| C(1) | -0.1965 (5) | 0.011 (1) | -0.4401 (4) | 0.053 (2) |
| C(3) | -0.2441 (6) | 0.338 (1) | -0.3500 (6) | 0.063 (3) |
| C(4) | -0.3499 (7) | 0.394 (1) | -0.4430 (6) | 0.072 (3) |
| C(10) | -0.3517 (6) | $0 \cdot 260$ (1) | -0.5450 (6) | 0.063 (2) |
| C(5) | -0.4309 (6) | $0 \cdot 312$ (2) | -0.6418 (6) | 0.079 (3) |
| C(6) | -0.4407 (8) | $0 \cdot 187$ (2) | -0.7357 (7) | 0.091 (4) |
| C(7) | -0.3703 (7) | 0.005 (2) | -0.7327 (6) | 0.088 (3) |
| C(8) | -0.2911 (7) | -0.052 (1) | -0.6388 (6) | 0.074 (3) |
| C(9) | -0.2818 (6) | 0.076 (1) | -0.5439 (5) | 0.058 (2) |
| C(11) | -0.0564 (7) | 0.055 (1) | -0.4531 (5) | 0.062 (3) |
| N(12) | 0.0499 (6) | 0.089 (1) | -0.4637 (5) | 0.079 (3) |
| C(14) | -0.0478 (6) | 0.034 (1) | -0.1694 (5) | 0.065 (2) |
| C(15) | 0.0396 (7) | -0.129 (2) | -0.1778 (6) | 0.081 (3) |
| C(16) | $0 \cdot 1684$ (8) | -0.105 (2) | -0.1331 (8) | 0.090 (3) |
| C(17) | 0.2110 (7) | $0 \cdot 080$ (2) | -0.0818 (6) | 0.078 (3) |
| C(18) | $0 \cdot 1242$ (8) | $0 \cdot 240$ (2) | -0.0792 (6) | 0.083 (3) |
| C(19) | -0.0047 (7) | $0 \cdot 220$ (1) | -0.1210 (6) | 0.074 (3) |
| C(20) | 0.3514 (9) | 0.097 (2) | -0.0296 (8) | $0 \cdot 109$ (4) |

The $y$ coordinate of atom $\mathrm{S}(11)$ defines the origin.
Table 2. Bond lengths $(\AA)$ and selected angles $\left({ }^{\circ}\right)$

| $\mathrm{C}(1)-\mathrm{N}(2)$ | 1.461 (8) | $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.393 (10) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(9)$ | 1.511 (8) | $\mathrm{C}(11)-\mathrm{N}(12)$ | $1 \cdot 134$ (9) |
| $\mathrm{C}(1)-\mathrm{C}(11)$ | 1.491 (9) | $\mathrm{S}(11)-\mathrm{O}(12)$ | $1 \cdot 425$ (6) |
| $\mathrm{N}(2)-\mathrm{C}(3)$ | 1.487 (9) | $\mathrm{S}(11)-\mathrm{O}(13)$ | 1.454 (6) |
| $\mathrm{N}(2)$-S(11) | 1.627 (6) | $\mathrm{S}(11)-\mathrm{C}(14)$ | 1.756 (7) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.524 (10) | $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.395 (12) |
| $\mathrm{C}(4)-\mathrm{C}(10)$ | 1.497 (11) | $\mathrm{C}(15)-\mathrm{C}(16)$ | 1.388 (11) |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.380 (13) | $\mathrm{C}(16)-\mathrm{C}(17)$ | 1.395 (15) |
| $\mathrm{C}(5)-\mathrm{C}(10)$ | 1.393 (10) | $\mathrm{C}(17)-\mathrm{C}(18)$ | 1.372 (14) |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.383 (16) | $\mathrm{C}(17)-\mathrm{C}(20)$ | 1.521 (12) |
| C(7)-C(8) | 1.374 (11) | $\mathrm{C}(18)-\mathrm{C}(19)$ | 1.376 (11) |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.400 (10) | $\mathrm{C}(19)-\mathrm{C}(14)$ | $1 \cdot 390$ (12) |
| $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$ | 110.4 (4) | $\mathrm{N}(2)-\mathrm{S}(11)-\mathrm{O}(12)$ | $105 \cdot 8$ (3) |
| $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(11)$ | $112 \cdot 3$ (5) | $\mathrm{N}(2)-\mathrm{S}(11)-\mathrm{O}(13)$ | $105 \cdot 7$ (3) |
| $\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(11)$ | $110 \cdot 6$ (4) | $\mathrm{O}(12)-\mathrm{S}(11)-\mathrm{C}(14)$ | 108.2 (3) |
| $\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$ | $112 \cdot 2$ (5) | $\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$ | $120 \cdot 3$ (5) |
| $\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{S}(11)$ | $120 \cdot 3$ (4) | $\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{N}(12)$ | 179.6 (6) |
| $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{S}(11)$ | 120.1 (4) | S(11)-C(14)-C(15) | 119.3 (5) |
| $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 107.6 (5) | $\mathrm{S}(11)-\mathrm{C}(14)-\mathrm{C}(19)$ | $120 \cdot 5$ (5) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$ | 114.3 (6) | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)$ | 119.4 (8) |
| $\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$ | 121.5 (6) | $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(20)$ | 121.9 (8) |
| $\mathrm{O}(13)-\mathrm{S}(11)-\mathrm{C}(14)$ | $107 \cdot 5$ (4) |  |  |

contrast to the value of $114.4(2)^{\circ}$ found in (I) (Pływaczyk et al., 1984), but in agreement with the value found in (III) $\left[109.7(5)^{\circ}\right]$ (Urbaniak et al., 1986), which is rather unexpected, since (III) has no cyano group on $\mathrm{C}(1)$. The sum of valence angles around $\mathrm{N}(2)$ is $352 \cdot 6(15)^{\circ}$ showing its considerable pyramidalization. The average of the absolute values of torsion angles around the heterocyclic ring is $34 \cdot 2^{\circ}$. The $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$ angle is $-2.9(7)^{\circ}$ and the remaining torsion angles determine the configuration to be intermediate between sofa and halfchair. The corresponding asymmetry parameters (Duax \& Norton, 1975) are $C_{2}^{2,3}=12.5$ and $C_{s}^{2}=$ 13.6. The configuration is, thus, intermediate
between that of (I) and (II). The nitrile $\mathrm{C}-\mathrm{N}$ bond distance $1 \cdot 134$ (9) $\AA$ is equal to that in (I) (Plywaczyk et al., 1984). The geometry around $\mathrm{C}(1)$ is almost the same as in (III), which lacks a nitrile group. The sulfonyl S-O bond lengths [1.425(6) and 1.454 (6) $\AA$ ] are comparable with those in (III) $[1.437(6)$ and $1.445(6) \AA]$. The $\mathrm{C}-\mathrm{S}$ distance $[1.756$ (7) $\AA$ ] is shorter than in (III) $[1.778$ (8) $\AA$ ] but similar to that in $p$-toluenesulfonic acid $[1.753$ (2) $\AA$ ] reported by Arora \& Sundaralingam (1971). The $S-N$ bond length $[1.627(6) \AA]$ is shorter than in (III) $[1.666$ (6) $\AA$ ]. The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle in the present structure, $120.3(3)^{\circ}$, is similar to that in (III). It appears that there are no significant geometrical differences from previously determined Reissert compounds.

The inspection of intramolecular nonbonding contacts shows one short contact $\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(13)$ $[\mathrm{C}(1) \cdots \mathrm{O}(13)=2 \cdot 906(8) \AA, \quad \angle \mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(13)=$ $\left.108.2(5)^{\circ}\right]$ which can be considered as a weak hydrogen bond. Molecular packing in the unit cell is


Fig. 1. The view of the molecule with atom numbering.


Fig. 2. Projection of the structure down $\mathbf{b}$.
shown in Fig. 2. There are no unusual intermolecular contacts in the structure.

The authors are indebted to Dr D. Brózda from A. Mickiewicz University for providing a sample of the compound. The work was supported by Project CPBP.01.12.10.3. (PAN).

## References

Arora, S. \& Sundaralingham, M. (1971). Acta Cryst. B27, 1293-1298.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. I. New York: Plenum.
Gzella, A., Jaskólski, M., Rychlewska, U. \& Kosturkiewicz, Z. (1984). Acta Cryst. C40, 2098-2100.

JASKÓLSKı, M. (1982). Fourth Symposium on Organic Crystal Chemistry, Poznań, September 1982, edited by Z. Kaluski, pp. 70-71. A. Mickiewicz Univ., Poland.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Plywaczyk, M., Tykarska, E., Jaskólski, M. \& Kosturkiewicz, Z. (1984). Acta Cryst. C40, 1107-1109.
Reissert, A. (1905). Ber. Dtsch, Chem. Ges. 38, 1603-1614.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Urbaniak, B., Jaskólski, M., Rozwadowska, M. \& KosturKiewicz, Z. (1986). Acta Cryst. C42, 1807-1809.

Acta Cryst. (1990). C46, 68-71

# Structure of Bis(1,3-di-o-anisyl-2-thioxo-1,3,2 $\lambda^{5}$-diazaphosphorinan-2-yl) Oxide* 

By J. P. Dutasta<br>Stéréochimie et Interactions Moléculaires, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon CEDEX 07, France<br>and C. Esteban-Calderon, B. Tinant and J.-P. DeclercQ<br>Laboratoire de Chimie Physique et de Cristallographie, Université Catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain La Neuve, Belgium

(Received 10 March 1989; accepted 24 April 1989)


#### Abstract

C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~S}_{2}, M_{r}=710 \cdot 80\), monoclinic, $P 2_{1} / c, a=12.122$ (4), $b=18.844$ (4), $c=7.738$ (3) $\AA$, $\beta=106.99(2)^{\circ}, \quad V=1690.5(9) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.40 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71069 \AA, \mu=3.01 \mathrm{~cm}^{-1}$, $F(000)=748, \quad T=291 \mathrm{~K}, \quad R=0.032 \quad$ for 2067 observed reflections. The centrosymmetric molecule possesses a linear $\mathrm{P}-\mathrm{O}-\mathrm{P}$ linkage with a $\mathrm{P}-\mathrm{O}$ bond length of $1 \cdot 593$ (1) $\AA$. The diazaphosphorinane ring adopts a chair conformation with the thiophosphoryl sulfur atom in the equatorial position and the bridging oxygen atom in the axial position. The aromatic sabstituent at $N(3)$ is axially oriented whereas the substituent at $\mathrm{N}(1)$ is rather equatorial. Both nitrogen atoms are pyramidally coordinated.


Introduction. As part of our studies on macrocyclic phosphoramide derivatives (Dutasta \& Simon, 1987), we have investigated the synthesis of rigidified molecules containing the 1,3,2-diazaphosphorinane ring

[^2]0108-2701/90/010068-04\$03.00
as the binding subunit. The present structure determination was undertaken to identify the main compound (1) formed in the reaction between hexamethylphosphorus triamide (HMPT) and $N, N^{\prime}$-di-o-anisyl-1,3-propanediamine. The unexpected dimeric structure of (1) containing two 1,3,2diazaphosphorinane rings was first suggested from the NMR and mass spectroscopy data. Knowledge of structures of 1,3,2-diazaphosphorinanes is still rather limited and detailed structural data previously available mainly concern compounds (2) $[R=$ $\mathrm{OC}_{2} \mathrm{H}_{5}, R^{\prime}=t-\mathrm{C}_{4} \mathrm{H}_{9}, X=\mathrm{S}, Y=\mathrm{CH}_{3}$; Belov et al., 1981; $R=\mathrm{Si}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, R^{\prime}=t-\mathrm{C}_{4} \mathrm{H}_{9}, X=$ lone pair, $Y$ $=H$; Nifant'ev, Sorokina, Vorob'eva, Borisenko \& Nevskii, 1985].
The determination of the molecular structure of the title compound is of particular interest as, to our knowledge, no thiopyrophosphoramidic structures have been reported so far. Only the X-ray structures of the acyclic octamethylpyrophosphoramide (4) in metal complexes have been described (Hussain, Joesten \& Lenhert, 1970; Kepert, Patrick \& White, © 1990 International Union of Crystallography


[^0]:    * To whom correspondence should be addressed.

[^1]:    $\dagger$ Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52131 ( 8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
    (C) 1990 International Union of Crystallography

[^2]:    * $P, P^{\prime}$-Oxybis(1,3-di- $O$-methoxyphenyl-1, $, 3,2 \lambda^{s}$-diazaphosphorinane 2 -sulfide).

